Prion protein as a mediator of synaptic transmission
نویسنده
چکیده
Neurodegenerative disorders are characterized by synaptic and neuronal dysfunction which precedes general neuronal loss and subsequent cognitive or behavioral anomalies. Although the exact early cellular signaling mechanisms involved in neurodegenerative diseases are largely unknown, a view is emerging that compromised synaptic function may underlie the initial steps in disease progression. Much recent research has been aimed at understanding these early underlying processes leading to dysfunctional synaptic signaling, as this knowledge could identify putative sites of interventions, which could potentially slow progression and delay onset of disease. We have recently reported that synaptic function in a Drosophila melanogaster model can be modulated by the presence of native mouse prion protein and this modulation is negatively affected by a mutation within the protein which is associated with the Gerstmann-Sträussler-Scheinker syndrome, a human form of prion disease. Indeed, wild-type prion protein facilitates synaptic release, whereas the mutated form induced diminished phenotypes. It is believed that together with the gain-of-function of neurotoxic misfolded prion signaling, the lack of prion protein contributes to the pathology in prion diseases. Therefore, our study investigated a potential endogenous role of prion protein in synaptic signaling, the lack of which could resemble a lack-of-function phenotype in prion disease.
منابع مشابه
Prion protein potentiates acetylcholine release at the neuromuscular junction.
Cellular prion protein (PrP(c)), the normal isoform of the pathogenic peptide (PrP(sc)) responsible of the transmissible spongiform encephalopaties (TSEs), is present in many neural tissues, including neuromuscular junctions (NMJ). To analyze if this protein could influence the synaptic transmission, we performed an electrophysiological approach to study the effect of cellular prion protein on ...
متن کاملP26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory
Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...
متن کاملMice deficient for prion protein exhibit normal neuronal excitability and synaptic transmission in the hippocampus.
We recorded in the CA1 region from hippocampal slices of prion protein (PrP) gene knockout mice to investigate whether the loss of the normal form of prion protein (PrPC) affects neuronal excitability as well as synaptic transmission in the central nervous system. No deficit in synaptic inhibition was found using field potential recordings because (i) responses induced by stimulation in stratum...
متن کاملThe Role of Activity in Synaptic Degeneration in a Protein Misfolding Disease, Prion Disease
In chronic neurodegenerative diseases associated with aggregates of misfolded proteins (such as Alzheimer's, Parkinson's and prion disease), there is an early degeneration of presynaptic terminals prior to the loss of the neuronal somata. Identifying the mechanisms that govern synapse degeneration is of paramount importance, as cognitive decline is strongly correlated with loss of presynaptic t...
متن کاملReduced expression of the presynaptic co-chaperone cysteine string protein alpha (CSPα) does not exacerbate experimentally-induced ME7 prion disease
Infection of mice with the ME7 prion agent results in well-characterised neuropathological changes, which includes vacuolation, neurodegeneration and synaptic degeneration. Presynaptic dysfunction and degeneration is apparent through the progressive reduction in synaptic vesicle proteins and eventual loss of synapses. Cysteine string protein alpha (CSPα), which regulates refolding pathways at t...
متن کامل